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Abstract

The differential quadrature (DQ) methodology introduced by the authors [see, Comput. Methods Appl. Mech.

Engng. 191 (2002a) 3509; Int. J. Solids Struct. 39 (19) (2002b) 4927; Int. J. Numer. Methods Engng. 54 (3) (2003a) 847;

J. Sound Vibrat. 263 (2) (2003b) 415] is employed for out-of-plane static analysis of circular arches under a wide

spectrum of boundary conditions. In addition to the classical boundary conditions, elastic restraints against translation

and rotation are also considered. Different loading conditions are examined. Several examples of arches with uniform,

continuous or stepped varying cross-sections are presented to demonstrate the accuracy of the methodology. The

domain decomposition technique in conjunction with the present DQ methodology is examined for certain cases. The

results are compared with those of exact solutions for several uniform or stepped sections arches and also for arches on

elastic foundations. Accurate converged numerical solutions are obtained with only few grid points.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Finite element and finite difference methods have been widely used for the solution of circular arch

structures. Employing low order approximation schemes in these methods may result in stress distributions

of oscillatory nature. To obtain highly accurate solutions, fine meshing should be used. Sophisticated

quantic–quantic or hybrid finite elements with high degrees of freedom may also be employed with ex-
cessive number of elements to obtain satisfactory solutions (Tong et al., 1998). The differential quadrature

method (DQM) can be used as an efficient numerical algorithm in this respect to cover some drawbacks of

other methods. DQM has been widely employed for the analysis of solid mechanics problems in recent

years. The details on the development and its implementation can be found in review papers by Bert and

Malik (1996, 1997). A major drawback in conventional DQ methods is the difficulty in boundary condition

implementations for differential equations with multiple boundary conditions at the boundary points.
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There has been a considerable effort to overcome this problem, especially for fourth-order governing

differential equations of classical beam and plate problems. These efforts will include the introduction of the

well known d-technique (Bert and Malik, 1996), modified weighing coefficients (Wang and Bert, 1993;
Malik and Bert, 1996), SBCGE and CBCGE coefficients of Shu and Du (1997a,b), and other methodo-
logies that assume the first derivative on the boundary as additional degrees of freedom (Chen et al., 1997;

Wang and Gu, 1997; Wang et al., 1998; Wu and Liu, 2000, 2001; De Rosa and Franciosi, 1998a,b, 2000).

On this matter, an alternative methodology based on defining the second derivatives of the field variable

only at the boundary points as independent degrees of freedom were introduced by the authors (Karami

and Malekzadeh, 2002a,b, 2003a,b).

The static governing equations of the thin arches include fourth and second-order differential equations.

Solution to such system of equations using the newly developed DQ methodology by the authors is a matter

of interest in this paper. Circular arches with different cross-sectional geometries, i.e. uniform, continuously
varying and stepped cross-section, under different loading conditions would be considered here. The

generality of the methodology would be demonstrated by considering different types of classical and non-

classical boundary conditions. Based on the proposed methodology, a domain decomposition technique for

the cases with discontinuities in geometries, loadings or material properties is presented. As an application,

the ring on elastic foundation with a series of point loads (Volterra, 1951), a rather important practical

problem is to be analyzed. Examples on arches having discontinuities in geometrical and material pro-

perties and also on arches with non-uniform cross-sections are presented.
2. Governing equations

The governing equations for out-of-plane response of a variable section circular arch are derived based

on the classical beam theory. The degrees of freedom are out-of-plane displacement v, and the angle of twist
u. The total potential energy of circular arches for out-of-plane response can be written as (Yoo and
Fehrenbach, 1981),
p ¼ 1
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where EIx, GJ , R, and u are respectively the flexural rigidity, torsional rigidity, center-line radius, and the
twist angle. kl and kt are liner and torsional elastic coefficients at the support. py , tz,Miz,Mix and Qiy (i ¼ 1; 2)
are the applied distributed transverse load, torque, twisting moment, bending moment and shear force at

the boundary, respectively. h0 is the sector angle (see Fig. 1). To reach an equilibrium state, the first

variation of Eq. (1) must be stationary, that is
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Fig. 1. Geometry of curved arches.
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Eqs. (2) and (3) represent the transverse and torsional equilibrium, respectively. The boundary conditions

for Eq. (1) are classified as,

(a) v ¼ 0 or shear force is prescribed
Qy þ
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where n is 1 for h ¼ 0 and )1 for h ¼ h0.
(b) dv

dh ¼ 0, or the bending moment is prescribed:
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(c) u ¼ 0, or the twisting moment is prescribed:
Mz �
GJ
R

du
dh

�
þ 1
R
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�
þ nktu ¼ 0 ð6Þ

where n is 1 for h ¼ 0 and )1 for h ¼ h0. Also, combinations of the above prescribed boundary con-
ditions provide a variety of practical boundary conditions. Some of the boundary conditions (Fig. 2)

to be considered here are given in Appendix A.

To simplify the equations, the following definitions are introduced.
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Using these definitions, the equilibrium equations for a variable stiffness circular arch become,
HV 0000 þ 2H 0V 000 � ðlh20H � H 00ÞV 00 � lH 0h20V
0 � ð1þ lÞHh20u

00 � ð2þ lÞH 0h20u
0 � H 00h20u þ lh40KV

� lh40Py ¼ 0 ð8Þ

Hð1þ lÞV 00 þ lH 0V 0 þ lHu00 þ lH 0u0 � Hh20u � lh20Tz ¼ 0 ð9Þ
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Fig. 2. Loading of a curved arch.
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where a single prime denotes a differentiation with respect to H. Using Eq. (6), the normalized form of

Eq. (4) becomes,
HðV 000 � h20u
0Þ þ H 0ðV 00 � h20uÞ þ nlh30KLVb þ lh30

QyR2

GJ0

� �
� lh30

MzR
GJ0

� �
� lh30nKTub ¼ 0 ð10Þ
The normalized forms for the other two types of natural boundary conditions, i.e. Eqs. (5) and (6) would

become respectively as,
HðV 00 � h20uÞ þ lh20
MxR
GJ0

� �
¼ 0 ð11Þ

Hðu þ V 0Þ � ðnh0KTÞu � h0
MzR
GJ0

� �
¼ 0 ð12Þ
2.1. DQ analogues of governing and boundary conditions

The degrees of freedom are taken to be V , and u within the domain and on the boundary, and Kð¼ V 00Þ
at the boundary points. Therefore, the vectors of boundary and domain degrees of freedom take the fol-

lowing forms,
fUgTb ¼ ½½V1 V2
 ½u1 u2
 ½K1 K2

; fUgTd ¼ ½½V2 � � � VN�1
 ½u2 � � � uN�1

 ð13Þ
Based on these definitions, the DQ analogues of the governing equations become,

Eq. (8):
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Eq. (9):
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where Aij and Bij are the weighting coefficients of the first and second-order derivatives, which are obtained

using the generalized differential quadrature rule (De Rosa and Franciosi, 1998a; Shu and Richards, 1992).

By separating the boundary and the domain degrees of freedom in Eqs. (14) and (15), the DQ analogue

equations are obtained in the matrix form as,
½Sdb
fUgb þ ½Sdd 
fUgd ¼ fF gd ð16Þ
Based on the definitions for the degrees of freedom, one can obtain the elements of coefficient matrices ½Sdb
,
and ½Sdd 
 easily. Similarly, the DQ analogues of the boundary conditions are obtained as:

Displacement is prescribed:
Vb ¼ 0 b ¼ 1 or N ð17Þ

Rotation is prescribed:
ub ¼ 0 b ¼ 1 or N ð18Þ

Slope is prescribed:

The zero slope boundary conditions are implemented through K at the corresponding boundary points
as,
Kb �
XN
k¼1

Xmu
j¼ml

AbjAjkVk ¼ 0 for b ¼ 1 or N ð19Þ
In the above equation at H ¼ 0, ml ¼ 2 for zero slope conditions, otherwise ml ¼ 1. At edge H ¼ 1,
mu ¼ N � 1 for zero slope condition, otherwise mu ¼ 1.

Bending moment is prescribed:
HbðKb � h20ubÞ þ lh20
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� �
¼ 0; for b ¼ 1 or N ð20Þ
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Shear force is prescribed:
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The assembled form of the boundary conditions become
½Sbb
fUgb þ ½Sbd 
fUgd ¼ fF gb ð23Þ
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After eliminating the boundary degrees of freedom, Eq. (23) becomes,
½S
fUgd ¼ fF g ð24Þ
where
½S
 ¼ ½Sdd 
 � ½Sdb
½Sbb
�1½Sbd 
; fF g ¼ fF gd � ½Sdb
½Sbb
�1fF gb

After evaluating the values for the domain degrees of freedom, one can subsequently obtain the values for

the boundary degrees of freedom. The bending and twisting moments at any section of the arch can be

obtained as, respectively,
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It should be mentioned that the bending moments on the boundaries may be obtained from Eq. (20) more

accurately.

2.2. Domain decomposition technique

Civan and Sliepcevich (1985) introduced domain decomposition technique with DQM for the first time.

When the coefficients in the governing differential equations change within the domain of interest (see Fig.

3), domain decomposition technique may then become a necessity. For such problems, the vector of

boundary degrees of freedom should be modified to include the displacements and their second differen-

tiations at the common sections of each of the two adjacent sub-domains. For example, consider section �i�
of the two sub-domains �i� and �iþ 1�; the new boundary degrees of freedoms at the common section are
½Vic uic KiL KiR
. Subscripts �c�, �L� and �R� stand for common node, left and right of a common section �i�.
Therefore, the boundary degrees of freedom become,
fUbg ¼ ½½V1 VN 
 ½u1 uN 
 ½K1 KN 
 ½v1c u1c K1L K1R
 . . . ½vNcc uNcc KNcL KNcR


T ð27Þ
where Nc is the number of common sections of (Nc þ 1) sub-domains.
The governing equations of each sub-domain are similar to those of a single domain obtained in Section

2.1. In addition to the external boundary conditions, the geometrical and physical compatibilities should be

satisfied at the common sections of the two adjacent sub-domains. The geometrical compatibility condi-

tions include the continuity of tangential and radial displacements, and the slopes. The continuity of the

displacement components is automatically satisfied, since they are chosen as the degrees of freedom. The

continuity of slopes would be enforced through the following differential quadrature rule,
1
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In the above equations �Ni� represents the number of grid points in sub-domain �i�. bi ¼ Ni for ith sub-
domain and biþ1 ¼ 1 for (iþ 1)th sub-domain. Due to the fact that the number of grid points in each sub-
domain may be unequal, their weighting coefficients could be different.
The DQ analogues for the equilibrium continuity of torsion, bending moments and shear forces become,

respectively,
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Fig. 3. An arbitrary arch composed of different circular segments.
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where Ti, Mi and Qi are the concentrated external twisting moment, bending moment, and shear force at the

common section �i�. The assembled forms of the governing and boundary conditions have similar forms as
those of Eqs. (16) and (23).
3. Numerical results

In all the examples non-dimensional transverse displacement (V �), twist angle (u�), bending moment
(M�

x ), and twisting moment (M
�
z ) are presented according to the following definitions:
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Under distributed load (py):
Table

Conve

a

0.0

)0.4

a Ex
V � ¼ V
GJ0
pyR3

� �
¼ v

GJ0
pyR4

� �
; u� ¼ u

GJ0
pyR3

� �
; M�

x ¼ Mx

pyR2
; M�

z ¼ Mz

pyR2
Under concentrated shear force (Qy):
V � ¼ V
GJ0
QyR2

� �
¼ v

GJ0
QyR3

� �
; u� ¼ u

GJ0
QyR2

� �
; M�

x ¼ Mx

QyR
; M�

z ¼ Mz

QyR
In the presence of concentrated twisting moment (Mz ¼ T ) at boundary:
V � ¼ V
GJ0
TR

� �
¼ v

GJ0
TR2

� �
; u� ¼ u

GJ0
TR

� �
; M�

x ¼ Mx

T
; M�

z ¼ Mz

T

For arches with discontinuity in stiffness properties (see Fig. 6) instead of J0, J1 is used. The Poisson�s ratio,
t, is chosen to be 0.3. In all tables, the arc angle (h0) of the entire arch or the sub-domain arc angle (h0i) are
usually given. Without loss of generality, the cross-sections are assumed to be circular, except for the ring

on elastic foundation. A linear variation in radius size is chosen for the cases of continuously varying cross-
sections and thus the following functions for torsional and bending stiffness may be assumed.
J ¼ p
2
r40ð1þ aHÞ4 ¼ J0ð1þ aHÞ4 ¼ J0H ; I ¼ p

4
r40ð1þ HÞ4 ¼ I0ð1þ aHÞ4 ¼ I0H ;
r0 is the section radius of arch at h ¼ 0.

3.1. Arches with classical boundary conditions

In Table 1, the DQM solution convergency for uniform and continuously varying cross-section canti-

lever arches subjected to a torque (Mz ¼ T ) and shear force (Qy ¼ �T=R) at their free ends is examined. As
shown the present DQM solutions are matching with the exact solutions up to five significant digits with
only 11 grid points (N ¼ 11) for the arch with uniform cross-section.

A circular arch problem solved using DQM by Kang et al. (1996) is to be considered here as a

benchmark example. They analyzed this arch problem having a constant circular cross-section with both

ends simply-supported and/or clamped subjected to end torques. d-technique have been used to implement
the boundary conditions for transverse displacements. Thirteen grid points were employed. They showed

that the solution accuracy decreases if d becomes too small or too large due to numerical instability. They
1

rgence of results for cantilever circular arc shaft subjected to torque and shear force at free end (h0 ¼ 180�; Qy ¼ �T=R)

h Number of grid points (N ) Exacta

7 9 11 13

90� V � )2.3346 )2.3401 )2.3400 )2.3400 )2.3400
u� )1.2339 )1.2307 )1.2308 )1.2308 )1.2308
M�

z )1.0003 )1.0000 )1.0000 )1.0000 )1.0000
M�

x 1.9970 2.0001 2.0000 2.0000 2.0000

90� V � )3.1291 )3.1420 )3.1419 )3.1419 –

u� )2.1799 )2.1361 )2.1350 )2.1350 –

M�
z )1.0152 )1.0007 )1.0000 )1.0000 )1.0000

M�
x 2.0009 1.9998 2.0000 2.0000 2.0000

act solutions according to Appendix B for the case of a ¼ 0:0.



Table 2

Convergence of results for circular arc shaft with both end flexurally simply supported subjected to end torque (h0 ¼ 90�)
A h Number of grid points (N ) Exact (Kang et al., 1996)

7 9 11 13

0.0 45� V � 0.32532 0.32532 0.32532 0.32532 0.32532

u� )1.11072 )1.11072 )1.11072 )1.11072 )1.11072

0.4 45� V � 1.25469 1.25432 1.25430 1.25430 –

u� )0.40604 )0.40592 )0.40591 )0.40591 –
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found the optimal values for d by a trial and error procedure. Due to anti-symmetric nature of loading and
the symmetry of the geometry and boundary conditions, half of the arch is considered here with the fol-

lowing conditions at the middle of arch,
Table

Result

V �

U�

M�
z

M�
x

aRe
v ¼ 0; u ¼ 0; d2v

dh2
¼ 0 at h ¼ h0
Again the solution convergence behavior for the uniform as well as continuously varying cross-section arch

with both ends simply supported and subjected to end torques are shown in Table 2. It is obvious that for
prismatic cross-sections (the situation considered by Kang et al., 1996) only seven grid points (N ¼ 7) are
sufficient here to obtain solutions with five significant digits accuracy. For the same example, but with a

variable cross-section and with a taper parameter of a ¼ 0:4, 11 grid points were needed to obtain a
converged solution with comparable significant digits. It was realized that the twisting and bending mo-

ments have similar convergence pattern as those for the twisting angle and displacement.

The results for a uniform cross-section arch with both ends clamped are presented in Table 3. Also,

converged solutions for a simply supported arch with continuously varying cross-section for different values

of taper parameter are presented in Table 4.
The solutions for a continuously varying cross-section cantilever shaft subjected to a concentrated shear

force and twisting moments at its free-end can be found in Table 5. As no exact solutions can be found for

tapered arches, to check the validity of the numerical solutions, bending and twisting moments were

evaluated at different sections of the shaft using Eqs. (22) and (23). The resulted DQM solutions were then

compared with those values obtained from the equilibrium equations for bending and twisting moments

prove the validity of the DQM solutions for the field variables v and u.
3.2. Arches with non-classical boundary conditions

As an example of an arch with non-classical boundary conditions, a uniformly loaded prismatic
circular arch with one end (h ¼ 0) elastically restrained against rotation, and the other end (h ¼ h0)
3

s for uniform circular arc shaft with both ends flexurally clamped subjected to end torques (N ¼ 11, h0 ¼ 90�)a

h

0� 18� 36� 54� 72� 90�

0.0000 )0.009935 )0.02435 )0.02863 )0.01897 0.0000

)0.8511 )0.5623 )0.3359 )0.1767 )0.07281 0.0000

1.0000 0.7776 0.5770 0.4178 0.3156 0.2803

)0.7197 )0.6844 )0.5822 )0.4230 )0.2224 0.0000

sults in this table match with exact solutions (Kang et al., 1996) to the indicated number of digits.



Table 4

Results for non-uniform circular arc shaft with both ends flexurally simply supported and subjected to end torques (N ¼ 11, h0 ¼ 90�)a

a H

0� 18� 36� 54� 72� 90�

V � 0.0 0.0000 0.2373 0.3283 0.2950 0.1712 0.0000

0.2 0.0000 0.1459 0.1977 0.1747 0.1003 0.0000

0.4 0.0000 0.09689 0.1287 0.1121 0.0638 0.0000

u� 0.0 )1.5708 )1.4939 )1.2708 )0.9233 )0.4854 0.0000

0.2 )1.1030 )0.9583 )0.7609 )0.5231 )0.2625 0.0000

0.4 )0.83196 )0.6590 )0.4903 )0.3217 )0.1559 0.0000

aM�
z andM

�
x match with exact solutions (Kang et al., 1996) up to five significant digits at any a. V � and u� match with exact solutions

(Kang et al., 1996) up to the indicated number of digits at a ¼ 0.

lk

op

tk R

Fig. 4. Uniformly loaded arch with elastically restrained and against rotation and transverse displacement.

Table 5

Results for non-uniform cantilever circular arc shaft subjected to torque and shear force at free end (N ¼ 11, h0 ¼ 180�, Qy ¼ �T=R)a

a h

0� 36� 72� 90� 108� 154� 180�

V � 0.0 0.0000 )0.1181 )1.3012 )2.3400 )3.6471 )6.5628 )8.6998
)0.2 0.0000 )0.1913 )1.4529 )2.6861 )4.3011 )8.1328 )11.168
)0.4 0.0000 )0.2026 )1.6414 )3.1419 )5.2148 )10.594 )15.377

U� 0.0 0.0000 )1.6228 )1.8576 )1.2308 )1.3998 2.8739 5.5582

)0.2 0.0000 )1.7636 )2.2284 )1.5942 )0.3217 3.7078 7.9646

)0.4 0.0000 )1.9256 )2.7294 )2.1350 )0.6387 5.1972 13.344

M�
z Any a )3.0000 )2.6180 )1.6180 )1.0000 )0.3820 0.6180 1.0000

M�
x Any a 0.0000 1.1756 1.9021 2.0000 1.9021 1.1756 0.0000

a See footnote of Table 4.
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elastically restrained against transverse displacement (see Fig. 4) is considered. The exact solutions for

this problem were derived and are presented in Appendix B. The DQM solutions are shown in Table 6.
Different values for the torsional and linear elastic coefficients are selected and without loss of gene-



Table 6

Results for uniform circular arc shaft with elastically restrained against rotation-elastically restrained against transverse displacement

under uniform load (N ¼ 12, h0 ¼ 180�)a

KL ¼ KT h

0� 32.73� 65.46� 98.18� 130.91� 163.64� 180�

V � 10�2 0.00000 10.258 37.627 73.118 105.19 123.51 125.47

1.0 0.00000 0.3582 1.1970 1.9846 2.2137 1.6765 1.1681

102 0.00000 0.2380 0.7771 1.2086 1.1551 0.5021 0.01095

106 0.00000 0.2366 0.7724 1.2002 1.1442 0.4907 0.00000

C-S supports 0.00000 0.2366 0.7724 1.2002 1.1442 0.4907 0.00000

u� 10�2 63.241 53.034 25.364 )10.523 )42.784 )61.300 )63.266
1.0 0.8054 0.6210 )0.4368 )1.5641 )2.0471 )1.6017 )1.0976
102 0.000952 0.02699 )0.6621 )1.3856 )1.5612 )0.9930 )0.5057
106 0.000000 0.02038 )0.6641 )1.3831 )1.5556 )0.9867 )0.5000

C-S supports 0.000000 0.02038 )0.6641 )1.3831 )1.5556 )0.9867 )0.5000

M�
z 10�2 0.6321 )0.2805 )0.6864 )0.6380 )0.3320 )0.4696 0.0000

1.0 0.8054 )0.1210 )0.5638 )0.5637 )0.3021 )0.04345 0.0000

102 0.9522 0.01414 )0.4599 )0.5007 )0.2768 )0.04048 0.0000

106 0.9549 0.01666 )0.4579 )0.4996 )0.2763 )0.04042 0.0000

C-S supports 0.9549 0.01666 )0.4579 )0.4996 )0.2763 )0.04042 0.0000

M�
x 10�2 )2.0000 )1.1629 )0.2741 0.3843 0.6031 0.3130 0.0000

1.0 )2.0000 )1.2097 )0.3529 0.2985 0.5376 0.2886 0.0000

102 )2.0000 )1.2494 )0.4196 0.2259 0.4822 0.2679 0.0000

106 )2.0000 )1.2502 )0.4209 0.2245 0.4811 0.2675 0.0000

C-S supports )2.0000 )1.2502 )0.4209 0.2245 0.4811 0.2675 0.0000

aResults in this table match with exact solutions (Appendix B) up to the indicated number of digits.
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rality, their non-dimensional values are taken to be equal, i.e. KT ¼ KL. One should note that the rigid
body motion (torsional rotation) causes the displacements and also the rotations to increase as the

values of the support elastic coefficients at the ends are reduced. Also, when the elastic coefficients

become very large, i.e. KT, KL P 102, the results would converge to those results of a clamped-simply

(C-S) supported arch. The results were obtained with N ¼ 12, although satisfactory accurate results
may be obtained with N ¼ 9, especially for the cases that KT, KL P 1. Similar to previous examples,

excellent agreements with corresponding exact solutions at different values for elastic coefficients are

achieved.
3.3. Examples with domain decomposition technique

In this section example problems that need domain decomposition technique are to be considered. The

exact solutions for these problems are either derived by the authors as presented in Appendix B or have

been taken from the work by Volterra (1951).
3.3.1. Ring on elastic foundations with point loads

A ring on elastic foundation with a series of point loads is considered (see Fig. 5). Volterra (1951)

presented an analytical solution for this uniform section circular ring on elastic foundation. Due to point

loads, global basis or test functions cannot be used to evaluate the weighting coefficients and therefore the

adoption of the domain decomposition technique becomes a necessity. Due to symmetry of the geometry
and loading condition, with n concentrated forces, only (1=n) of the ring is considered. The geometry of the



Table 7

Convergence of the results for uniform circular ring on elastic foundation subjected to point loads (2c ¼ 180�, l ¼ 1)a

N h (K ¼ 1) h (K ¼ 100)
0.0� 30� 60� 90� 0.0� 30� 60� 90�

102 
 V � 7 24.323 27.845 35.511 39.980 )0.08976 )0.03368 0.4479 1.1762

10 24.325 27.844 35.508 39.978 )0.1091 )0.04038 0.4622 1.1964

13 24.325 27.844 35.508 39.978 )0.1092 )0.04045 0.4621 1.1960

16 24.325 27.844 35.508 39.978 )0.1092 )0.04045 0.4621 1.1960

102 
 u� 7 11.941 6.4028 )5.8330 )13.163 0.5823 0.5655 )0.1629 )1.4524
10 11.939 6.4069 )5.8218 )13.150 0.6381 0.5885 )0.1842 )1.4916
13 11.939 6.4069 )5.8218 )13.150 0.6392 0.5891 )0.1836 )1.4904
16 11.939 6.4069 )5.8218 )13.150 0.6392 0.5891 )0.1836 )1.4904

102 
M�
z 7 0.0000 )7.2254 )8.8516 0.0000 0.0000 )0.00816 )1.0615 0.0000

10 0.0000 )7.2170 )8.8431 0.0000 0.0000 )0.05358 )1.1051 0.0000

13 0.0000 )7.2170 )8.8431 0.0000 0.0000 )0.05421 )1.1048 0.0000

16 0.0000 )7.2170 )8.8431 0.0000 0.0000 )0.05421 )1.1048 0.0000

102 
M�
x 7 )15.612 )10.173 5.5530 29.234 0.5117 )1.0288 )2.2564 10.191

10 )15.600 )10.168 5.5486 29.221 0.3868 )1.0199 )2.2400 10.499

13 )15.600 )10.168 5.5486 29.221 0.3856 )1.0186 )2.2382 10.498

16 )15.600 )10.168 5.5486 29.221 0.3856 )1.0186 )2.2382 10.498

aResults in this table match with exact solutions (Volterra, 1951) up to the indicated number of digits.
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Fig. 5. (a) A Ring on elastic foundation subjected to point loads (b) Geometry of the modeling.

6538 P. Malekzadeh, G. Karami / International Journal of Solids and Structures 40 (2003) 6527–6545
model is shown in Fig. 5(b) and the boundary conditions at its ends are stated in Appendix A. Two sub-
domains are sufficient for the analysis of this problem. Three different loading conditions are considered

and in each case different values for the elastic foundation are examined. In Table 7, the solution con-

vergence is shown for the ring under only two point loads, the least number of point loads for a symmetric

loading. In Table 8, the results for the cases that the numbers of point loads are relatively large are ex-

hibited. Also, the results for an intermediate number of point loads are presented in Table 9. By comparing

the results for these cases one can conclude that in all cases using N 6 13 can yield a converged solution for



R
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Fig. 6. A cantilever arch with discontinuity in stiffness.

Table 9

Convergence of the results for uniform circular ring on elastic foundation subjected to point loads (2c ¼ 90�, l ¼ 1)a

N h (K ¼ 1) h (K ¼ 100)
0.0� 15� 30� 45� 0.0� 15� 30� 45�

102 
 V � 7 63.091 63.352 63.938 64.303 0.2552 0.4215 0.8185 1.0874

10 63.091 63.352 63.938 64.303 0.2552 0.4217 0.8185 1.0868

13 63.091 63.352 63.938 64.303 0.2552 0.4217 0.8185 1.0868

102 
 u� 7 1.0717 0.5848 )0.5186 )1.2108 0.7214 0.4109 )0.3356 )0.8478
10 1.0719 0.5851 )0.5183 )1.2106 0.7158 0.4055 )0.3403 )0.8512
13 1.0719 0.5851 )0.5183 )1.2106 0.7158 0.4055 )0.3403 )0.8512

102 
M�
z 7 0.0000 )1.6260 )2.0133 0.0000 0.0000 )1.0524 )1.4294 0.0000

10 0.0000 )1.6260 )2.0133 0.0000 0.0000 )1.0506 )1.4271 0.0000

13 0.0000 )1.6260 )2.0133 0.0000 0.0000 )1.0506 )1.4271 0.0000

102 
M�
x 7 )7.0093 )4.6191 2.4051 13.622 )4.3683 )3.2557 )1.0892 10.876

10 )7.0093 )4.6191 2.4051 13.622 )4.3727 )3.2567 )1.0932 10.883

13 )7.0093 )4.6191 2.4051 13.622 )4.3727 )3.2567 )1.0932 10.883

aResults in this table match with exact solutions (Volterra, 1951) up to the indicated number of digits.

Table 8

Convergence of the results for uniform circular ring on elastic foundation subjected to point loads (2c ¼ 30�, l ¼ 1)a

N h (K ¼ 1) h (K ¼ 100)
0.0� 5� 10� 15� 0.0� 5� 10� 15�

102 
 V � 7 190.97 190.98 190.99 191.01 1.8921 1.9001 1.9184 1.9301

13 190.97 190.98 190.99 191.01 1.8921 1.9001 1.9184 1.9301

103 
 u� 7 0.3540 0.1946 )0.1706 )0.4040 0.3524 0.1939 )0.1694 )0.4020
13 0.3540 0.1946 )0.1706 )0.4040 0.3524 0.1939 )0.1694 )0.4020

102 
M�
z 7 0.0000 )0.1705 )0.2129 0.0000 0.0000 )0.1696 )0.2120 0.0000

13 0.0000 )0.1705 )0.2129 0.0000 0.0000 )0.1696 )0.2120 0.0000

102 
M�
x 7 )2.1991 )1.4640 0.7356 4.3833 )2.1863 )1.4575 0.7293 4.7301

13 )2.1991 )1.4640 0.7356 4.3833 )2.1863 )1.4575 0.7293 4.7301

aResults in this table match with exact solutions (Volterra, 1951) up to the indicated number of digits.
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Table 10

Results for stepped arc shaft with clamped-free ends subjected to uniform loads (N ¼ 9, h01 ¼ h02 ¼ 90�)a

e h

0� 22.5� 45� 90� 135� 157.5� 180�

2 V � 0.0000 0.0073 0.3271 1.3591 2.6952 3.2226 3.5104

U� 0.0000 0.4673 0.6060 )0.0086 )1.1265 )1.6393 )1.9261
M�

z 3.1416 2.3662 1.6491 0.5708 0.0078 0.00100 0.00000

M�
x )2.0000 )1.9239 )1.7071 )1.0000 )0.2929 )0.00761 0.00000

4 V � 0.0000 0.0365 0.1636 0.6796 1.4469 1.8010 2.0290

U� 0.0000 0.2337 0.3030 )0.0043 )0.5534 )0.8928 )1.1200
M�

z 3.1416 2.3662 1.6491 0.5708 0.0078 0.00100 0.00000

M�
x )2.0000 )1.9239 )1.7071 )1.0000 )0.2929 )0.00761 0.00000

aResults in this table match with exact solutions (Appendix B) up to the indicated number of digits.

6540 P. Malekzadeh, G. Karami / International Journal of Solids and Structures 40 (2003) 6527–6545
the problem. As expected, when the number of point loads is increased (see Table 8), the transverse dis-
placement at each section converges to a unique value and the rotation approaches zero. This is because the

loading conditions approaches to a uniform loading condition for which the transverse displacements at all

section should become equal and the rotation should tend to zero. Using similar procedure, the domain

decomposition technique can be implemented for non-uniform rings under non-symmetric loading.

3.3.2. An arch with discontinuous geometrical and material properties

A cantilever arch with discontinuity in its stiffness subjected to a uniform loading is considered (see Fig.

6). It is assumed both sub-domains have equal Poisson�s ratio (¼ 0.3) but their Young�s moduli would be
different. Exact solutions for this problem are given in Appendix B. In Table 10, DQM solutions are

presented. Using nine grid points at each sub-domain yields solutions accurate to five significant digits.

Different stiffness ratios i.e. e ¼ G1J1
G2J2

¼ E1I1x
E2I2x

were examined.
4. Closure

A DQ methodology was employed to study the out-of-plane static analysis of circular arches with
uniform, continuously varying, and stepped cross-sections and under different loading and boundary

conditions. The domain decomposition technique in conjunction with the proposed DQ methodology is

utilized for the analysis of arches having discontinuity in loading, material and geometry. For uniform and

stepped section arches, the solutions were compared with those of exact solutions where the accuracy and

the convergence of the methodology were verified under different classical and non-classical boundary

conditions. For non-uniform section arches, convergent solutions were obtained and the validity of the

results was discussed. Using the present DQ methodology with small number of grid points, accurate and

converged solutions for arch problems can be obtained.

Appendix A. The boundary conditions

The boundary conditions considered are of the following types:

(a) Flexurally simply support:
v ¼ 0; Mx ¼
EIx
R

�
� 1
R
d2v

dh2
þ u

�
¼ 0; Mz ¼

GJ
R

du
dh

�
þ 1
R
dv
dh

�
¼ 0 ðA:1Þ
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(b) Flexurally clamped:
v ¼ 0; dv
dh

¼ 0; Mz ¼
GJ
R

du
dh

�
þ 1
R
dv
dh

�
¼ 0 ðA:2Þ
(c) Clamped:
v ¼ 0; u ¼ 0; dv
dh

¼ 0; ðA:3Þ
(d) Elastically restrained against torsional rotation:
v ¼ 0; Mx ¼
EIx
R

�
� 1
R
d2v

dh2
þ u

�
¼ 0; �GJ

R
du
dh

�
þ 1
R
dv
dh

�
þ nktu ¼ 0 ðA:4Þ
(e) Elastically restrained against transverse displacement or free end:
1

R2
EIx

1

R
d3v

dh3

��
� du
dh

�
þ dðEIxÞ

dh
1

R
d2v

dh2

�
� u

�
� GJ

du
dh

�
þ 1
R
dv
dh

��
þ nklv ¼ 0

Mx ¼
EIx
R

�
� 1
R
d2v

dh2
þ u

�
¼ 0; Mz ¼

GJ
R

du
dh

�
þ 1
R
dv
dh

�
¼ 0 ðA:5Þ
(f) Boundary conditions for each end of the model presented for ring on elastic foundation:
dv
dh

¼ 0; Mz ¼
GJ
R

du
dh

�
þ 1
R
dv
dh

�
¼ 0;

Qy ¼
1

R2
EIx

1

R
d3v

dh3

��
� du
dh

�
þ dðEIxÞ

dh
1

R
d2v

dh2

�
� u

�
� GJ

du
dh

�
þ 1
R
dv
dh

��
¼ 0 ðA:6Þ
Appendix B. The exact solutions

B.1. Exact solutions for prismatic arches

The works by Volterra (1951) and Kang et al. (1996) can be extended to obtain the exact solutions for

differential governing equations of prismatic arches under uniform loading and general boundary condi-

tions. The general solutions under such situations take the following form,
V �ðHÞ ¼ �C1 cosH � C2 sinH � HðC3 sinH þ C4 cosHÞ þ 2ð�C3 cosH þ C4 sinHÞ
ð1þ lÞ þ C5H

þ C6 � sgnðpyÞðH2=2Þ ðB:1Þ

u�ðHÞ ¼ C1 cosH þ C2 sinH þ HðC3 sinH þ C4 cosHÞ � sgnðpyÞð1þ lÞ ðB:2Þ
where
H ¼ h=h0 and sgnðpyÞ ¼
1 if py is positive
�1 if py is negative

�
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In the above equations, fCg ¼ ½C1;C2;C3;C4;C5;C6
T are obtained after the implementation of the
boundary conditions. In the absence of uniform loading, the last terms in Eqs. (B.1) and (B.2) should

be removed. The bending and twisting moments are evaluated from Eqs. (B.1) and (B.2) as,
M�
x ðHÞ ¼ 2

ð1þ lÞ ðC3 cosH � C4 sinHÞ � sgnðpyÞ ðB:3Þ

M�
z ðHÞ ¼ 2

ð1þ lÞ ðC3 sinH þ C4 cosHÞ þ C5 � HsgnðpyÞ ðB:4Þ
Also, fCg ¼ ½C1;C2;C3;C4;C5;C6
T under different boundary and loading conditions are,

(a) Prismatic cantilever shaft subjected to end twisting moment and shear force:
C1 ¼ �1þ ð1� lÞ
cos h0

; C2 ¼
ð1þ lÞ sin h0
cos2 h0

; C3 ¼
1þ l
cos h0

; C4 ¼ �1 ðB:5Þ
(b) Elastically restrained prismatic shaft subjected to uniform transverse load:
fCg ¼

�KT 0 0 2=ð1þ lÞ 1 0

�1 0 �2=ð1þ lÞ 0 0 1

0 �1 0 ð1� lÞ=ð1þ lÞ 1 0

lKL cosh0 lKL sinh0 a1 b1 �lKLh0 �lKL

0 0 sinh0 cosh0 0:5ð1þ lÞ 0

0 0 cosh0 � sinh0 0 0

2
66666666664

3
77777777775

�1 �ð1þ lÞKT
0

0

� lKLh2
0

2

ð1þlÞh0
2

ð1þlÞ
2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
ðB:6Þ

where

a1 ¼ ½ð2l sin h0 þ 2lKL cos h0Þ=ð1þ lÞ
 þ lKLh0 sin h0;

b1 ¼ ½ð2l cos h0 � 2lKL sin h0Þ=ð1þ lÞ
 þ lKLh0 cos h0;
(c) Clamped-simply (C-S) supported arch under uniform load:
fCg ¼

1 0 0 0 0 0

�1 0 �2=ð1þ lÞ 0 0 1

0 �1 0 ð1� lÞ=ð1þ lÞ 1 0

l cos h0 l sin h0 a2 b2 �lh0 �l

0 0 sin h0 cos h0 0:5ð1þ lÞ 0

0 0 cos h0 � sin h0 0 0

2
6666666664

3
7777777775

�1 �ð1þ lÞ
0

0

� lh20
2

ð1þlÞh0
2

ð1þlÞ
2

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ðB:7Þ

where

a2 ¼ 2l sin h0=ð1þ lÞ; b2 ¼ ½�2l sin h0=ð1þ lÞ
 þ lh0 cos h0:
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B.2. Exact solutions for a cantilever shaft with discontinuous stiffness

By using Eqs. (B.1)–(B.4) for each sub-domain and satisfying the boundary as well as the continuity

conditions, exact solutions for a cantilever shaft having discontinuous stiffness (h01 ¼ h02) subjected to
uniform transverse loading (see Fig. 6) are obtained as

(a) In sub-domain 1(see Fig. 6):
V �ðHÞ ¼ �C1 cosH � C2 sinH � HðC3 sinH þ C4 cosHÞ þ 2

1þ l
ð�C3 cosH þ C4 sinHÞ

þ C5H þ C6 � ðH2=2eÞsgnðpyÞ ðB:8Þ
u�ðHÞ ¼ C1 cosH þ C2 sinH þ HðC3 sinH þ C4 cosHÞ � ð1þ lÞ
e

sgnðpyÞ ðB:9Þ
M�
x ðHÞ ¼ 2e

ð1þ lÞ ð�C3 cosH þ C4 sinHÞ � sgnðpyÞ ðB:10Þ
M�
z ðHÞ ¼ 2e

ð1þ lÞ ðC3 sinH þ C4 cosHÞ þ eC5 � HsgnðpyÞ ðB:11Þ

where

H ¼ h=h01

(b) In sub-domain 2 (see Fig. 6):
V �ðHÞ ¼ �C7 cosH � C8 sinH � HðC9 sinH þ C10 cosHÞ þ 2ð�C9 cosH þ C10 sinHÞ
ð1þ lÞ þ C11H

þ C12 � 0:5H2sgnðpyÞ ðB:12Þ
u�ðHÞ ¼ C7 cosH þ C8 sinH þ HðC9 sinH þ C10 cosHÞ � ð1þ lÞsgnðpyÞ ðB:13Þ
M�
x ðHÞ ¼ 2

ð1þ lÞ ð�C9 cosH þ C10 sinHÞ � sgnðpyÞ ðB:14Þ
M�
z ðHÞ ¼ 2

ð1þ lÞ ðC9 sinH þ C10 cosHÞ þ C11 � HsgnðpyÞ ðB:15Þ

where

H ¼ ðh � h01Þ=h02

h is measured from the fixed end (see Fig. 6).

Also, fCg ¼ ½C1;C2;C3;C4;C5;C6;C7;C8;C9;C10;C11;C12
T are obtained from the solution to the fol-

lowing matrix equation
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fCg¼

�1 0 0 0 0 0 0 0 0 0 0 0

1 0 2
ð1þlÞ 0 0 �1 0 0 0 0 0 0

0 1 0 �ðl�1Þ
ð1þlÞ 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 �sinh01 �cosh01 0 0

0 0 0 0 0 0 0 0 �sinh01 �cosh01 �0:5ð1þlÞ 0
0 0 0 0 0 0 0 0 �cosh01 sinh01 0 0

0 �1 �h01 0 0 0 1 0 0 0 0 0

0 1 h01 �2
ð1þlÞ �h01 1 1 0 �2

ð1þlÞ 0 0 1

�1 0 ðl�1Þ
ð1þlÞ 0 0 0 0 �1 0 ð1�lÞ

ð1þlÞ 1 0

0 0 � 2e
ð1þlÞ 0 �e 0 0 0 0 2

ð1þlÞ 1 0
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