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Abstract

The differential quadrature (DQ) methodology introduced by the authors [see, Comput. Methods Appl. Mech.
Engng. 191 (2002a) 3509; Int. J. Solids Struct. 39 (19) (2002b) 4927; Int. J. Numer. Methods Engng. 54 (3) (2003a) 847;
J. Sound Vibrat. 263 (2) (2003b) 415] is employed for out-of-plane static analysis of circular arches under a wide
spectrum of boundary conditions. In addition to the classical boundary conditions, elastic restraints against translation
and rotation are also considered. Different loading conditions are examined. Several examples of arches with uniform,
continuous or stepped varying cross-sections are presented to demonstrate the accuracy of the methodology. The
domain decomposition technique in conjunction with the present DQ methodology is examined for certain cases. The
results are compared with those of exact solutions for several uniform or stepped sections arches and also for arches on
elastic foundations. Accurate converged numerical solutions are obtained with only few grid points.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Finite element and finite difference methods have been widely used for the solution of circular arch
structures. Employing low order approximation schemes in these methods may result in stress distributions
of oscillatory nature. To obtain highly accurate solutions, fine meshing should be used. Sophisticated
quantic—quantic or hybrid finite elements with high degrees of freedom may also be employed with ex-
cessive number of elements to obtain satisfactory solutions (Tong et al., 1998). The differential quadrature
method (DQM) can be used as an efficient numerical algorithm in this respect to cover some drawbacks of
other methods. DQM has been widely employed for the analysis of solid mechanics problems in recent
years. The details on the development and its implementation can be found in review papers by Bert and
Malik (1996, 1997). A major drawback in conventional DQ methods is the difficulty in boundary condition
implementations for differential equations with multiple boundary conditions at the boundary points.
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There has been a considerable effort to overcome this problem, especially for fourth-order governing
differential equations of classical beam and plate problems. These efforts will include the introduction of the
well known d-technique (Bert and Malik, 1996), modified weighing coefficients (Wang and Bert, 1993;
Malik and Bert, 1996), SBCGE and CBCGE coefficients of Shu and Du (1997a,b), and other methodo-
logies that assume the first derivative on the boundary as additional degrees of freedom (Chen et al., 1997;
Wang and Gu, 1997, Wang et al., 1998; Wu and Liu, 2000, 2001; De Rosa and Franciosi, 1998a,b, 2000).
On this matter, an alternative methodology based on defining the second derivatives of the field variable
only at the boundary points as independent degrees of freedom were introduced by the authors (Karami
and Malekzadeh, 2002a,b, 2003a,b).

The static governing equations of the thin arches include fourth and second-order differential equations.
Solution to such system of equations using the newly developed DQ methodology by the authors is a matter
of interest in this paper. Circular arches with different cross-sectional geometries, i.e. uniform, continuously
varying and stepped cross-section, under different loading conditions would be considered here. The
generality of the methodology would be demonstrated by considering different types of classical and non-
classical boundary conditions. Based on the proposed methodology, a domain decomposition technique for
the cases with discontinuities in geometries, loadings or material properties is presented. As an application,
the ring on elastic foundation with a series of point loads (Volterra, 1951), a rather important practical
problem is to be analyzed. Examples on arches having discontinuities in geometrical and material pro-
perties and also on arches with non-uniform cross-sections are presented.

2. Governing equations

The governing equations for out-of-plane response of a variable section circular arch are derived based
on the classical beam theory. The degrees of freedom are out-of-plane displacement v, and the angle of twist
¢. The total potential energy of circular arches for out-of-plane response can be written as (Yoo and
Fehrenbach, 1981),
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where EI,, GJ, R, and ¢ are respectively the flexural rigidity, torsional rigidity, center-line radius, and the
twist angle. &; and k; are liner and torsional elastic coefficients at the support. p,, t., M., M;, and O, (i = 1,2)
are the applied distributed transverse load, torque, twisting moment, bending moment and shear force at
the boundary, respectively. 0, is the sector angle (see Fig. 1). To reach an equilibrium state, the first
variation of Eq. (1) must be stationary, that is
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Fig. 1. Geometry of curved arches.

Egs. (2) and (3) represent the transverse and torsional equilibrium, respectively. The boundary conditions
for Eq. (1) are classified as,

(a) v =0 or shear force is prescribed

1 1 d de\ d(EL) (1 d% do 1 dv
—|EL| = —= —— === —-0) - T = 4
Qy—i—Rz[ x(Rd03 d9>+ a0 (Rd92 (p) GJ(de—l—Rdgﬂ—&—nkw 0 4)

where n is 1 for 0 = 0 and —1 for 0 = 0.
(b) &£ =0, or the bending moment is prescribed:

EL (1 d%
() @ =0, or the twisting moment is prescribed:
GJ (de 1 dv
M—?(@‘FE@)‘F”/Q@—O (6)

where n is 1 for 6 = 0 and —1 for 6 = 6y. Also, combinations of the above prescribed boundary con-
ditions provide a variety of practical boundary conditions. Some of the boundary conditions (Fig. 2)
to be considered here are given in Appendix A.

To simplify the equations, the following definitions are introduced.
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Using these definitions, the equilibrium equations for a variable stiffness circular arch become,
HV" 4 2H'V" — (u0gH — H")WV" — uH'O)V' — (1 + w)HO 0" — (2 4+ wH' 03¢ — H" 03¢ + u03KV
~ uOiP, =0 (®)

H(L+ p)V" + pH'V' + pH¢" + pH'e' — HOyp — p03 7. = 0 )
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Fig. 2. Loading of a curved arch.

where a single prime denotes a differentiation with respect to ®. Using Eq. (6), the normalized form of

Eq. (4) becomes,
M.R :
- uGS( G ) — u0nKre, =0 (10)

R
HWV" - 0;¢") + H' (V" — 050) + nul KV, + ueg(%} )
0

The normalized forms for the other two types of natural boundary conditions, i.e. Egs. (5) and (6) would
become respectively as,

H(V" = 0o) mez(ZJR) =0 (11)
Hip + V') — (n00Kr)p e(ZJR) ~0 (12)

2.1. DQ analogues of governing and boundary conditions

The degrees of freedom are taken to be V, and ¢ within the domain and on the boundary, and K(= V")
at the boundary points. Therefore, the vectors of boundary and domain degrees of freedom take the fol-
lowing forms,

{UY, =% W (o1 o) (K1 Kall; {UY, =[5 - Pl [on - o]l (13)
Based on these definitions, the DQ analogues of the governing equations become,
Eq. (8):

=

—1

H, ZN: BBV, + 2H] ZN: NZIA,,HB,M (WOH; — H") ZBMV JH] 0 ZN:A,-,,, Vi

n=1 n=1 m=2 m=1 m=1

3
||
¥}

N
O RHE S By — 0+ WIS Ay — G, + (HBy 1 2H ALK,
m=1 m=1

+ (HBiy + 2H] A )Ky + 0K,V — plgPy = 0 (14)



P. Malekzadeh, G. Karami | International Journal of Solids and Structures 40 (2003 ) 6527-6545 6531

Eq. (9):

zNjB,m m+uH’ZA,m m+uHZBlm<pm+uH’ZA,m<pm Hibjp; — T = 0 (15)

m=1 m=1 m=1 m=1

where 4,; and B;; are the weighting coefficients of the first and second-order derivatives, which are obtained
using the generalized differential quadrature rule (De Rosa and Franciosi, 1998a; Shu and Richards, 1992).
By separating the boundary and the domain degrees of freedom in Egs. (14) and (15), the DQ analogue
equations are obtained in the matrix form as,

[Sal{U}, + [Sad{U}y = {F (16)

Based on the definitions for the degrees of freedom, one can obtain the elements of coefficient matrices [Sy),
and [S,,] easily. Similarly, the DQ analogues of the boundary conditions are obtained as:

Displacement is prescribed:

V,=0 b=1orN (17)
Rotation is prescribed:

0, =0 b=1orN (18)

Slope is prescribed:
The zero slope boundary conditions are implemented through K at the corresponding boundary points
as,

N

K, — Z ZAZ,.,-A(,-ka =0 forb=1orN (19)

k=1 j=ml

In the above equation at @ =0, ml =2 for zero slope conditions, otherwise m/ = 1. At edge & =1,
mu = N — 1 for zero slope condition, otherwise mu = 1.

Bending moment is prescribed:

MR )

G )= 0; forb=1orN (20)

Hy(Ky — 02py) + mf(

Twisting moment is prescribed:

My,R
<ZA},/QD] + ZAb/ > n@oKbT) Qp — 90( GbJO ) = 0, forb=1or N (21)

Shear force is prescribed:
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The assembled form of the boundary conditions become

[Sel{U}, + [Sea{U}, = {F}, (23)
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After eliminating the boundary degrees of freedom, Eq. (23) becomes,

[S{U}, = {F} (24)
where

[S] = [Sua] = [Sab(Se) " [Snals  {F} = {F}, — [Sws][Sws] " {F},

After evaluating the values for the domain degrees of freedom, one can subsequently obtain the values for
the boundary degrees of freedom. The bending and twisting moments at any section of the arch can be
obtained as, respectively,

MOy H o, &

20 .2 N "BV, | fori=2,....N—1 25

i u<"”° S o 23)

M,.RO - X

GJOO_f[i<ZAijqoj+ZAijI/j> foriz1,... N (26)
Jj=1 j=1

It should be mentioned that the bending moments on the boundaries may be obtained from Eq. (20) more
accurately.

2.2. Domain decomposition technique

Civan and Sliepcevich (1985) introduced domain decomposition technique with DQM for the first time.
When the coefficients in the governing differential equations change within the domain of interest (see Fig.
3), domain decomposition technique may then become a necessity. For such problems, the vector of
boundary degrees of freedom should be modified to include the displacements and their second differen-
tiations at the common sections of each of the two adjacent sub-domains. For example, consider section 7’
of the two sub-domains 7" and ‘% + 1’; the new boundary degrees of freedoms at the common section are
[Vie 9o Kio Kir]- Subscripts ‘c’, ‘L’ and ‘R’ stand for common node, left and right of a common section ‘7.
Therefore, the boundary degrees of freedom become,

{Us} = [ W] o1 on] [Ki Ki] [V1c @1c Kie Kir] - .- [owee @y Kvie Knr]]" (27)

where N, is the number of common sections of (N, + 1) sub-domains.

The governing equations of each sub-domain are similar to those of a single domain obtained in Section
2.1. In addition to the external boundary conditions, the geometrical and physical compatibilities should be
satisfied at the common sections of the two adjacent sub-domains. The geometrical compatibility condi-
tions include the continuity of tangential and radial displacements, and the slopes. The continuity of the
displacement components is automatically satisfied, since they are chosen as the degrees of freedom. The
continuity of slopes would be enforced through the following differential quadrature rule,

Nit1

NS ) 1 : :
E : (i) 1/ § : (1) pr(i+1) _
<§> Ah,m Vnp - (0#1) Ab,-HmVrr(lJr ) = 0 (28)
i m=1 i

m=1

In the above equations ‘N;” represents the number of grid points in sub-domain . b; = N; for ith sub-
domain and b, = 1 for (i + 1)th sub-domain. Due to the fact that the number of grid points in each sub-
domain may be unequal, their weighting coefficients could be different.

The DQ analogues for the equilibrium continuity of torsion, bending moments and shear forces become,
respectively,
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R
Subdomain ‘i+1’
Subdomain ‘i’

Section ‘i’

Fig. 3. An arbitrary arch composed of different circular segments.
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(30)

(31)

where T;, M; and Q; are the concentrated external twisting moment, bending moment, and shear force at the
common section 7’. The assembled forms of the governing and boundary conditions have similar forms as

those of Egs. (16) and (23).

3. Numerical results

In all the examples non-dimensional transverse displacement (V*), twist angle (¢*), bending moment

(M?), and twisting moment (M) are presented according to the following definitions:
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Under distributed load (p,):

GJ, GJ; GJ; M, M,
V*:V(—(;):U<—(l>7 (p*:(p<—0%>7 M:: 35 MZ*: 5
DR DR DR T DR PR

Under concentrated shear force (Q,):

V*_V<GJ0>_U<GJO> (P*_(p<GJo> M*_Mx M*_Mz
O,R ORY)’ OR*)" Y QR 7 OR

In the presence of concentrated twisting moment (M, = T) at boundary:

GJ GJ, GJ M, M.
Ve =vr —0 =V —0 ’ QD*:(P _0 ) M*:_a M =—
TR TR? TR x T : T

For arches with discontinuity in stiffness properties (see Fig. 6) instead of Jy, J; is used. The Poisson’s ratio,
v, 1s chosen to be 0.3. In all tables, the arc angle (0,) of the entire arch or the sub-domain arc angle (0y,) are
usually given. Without loss of generality, the cross-sections are assumed to be circular, except for the ring
on elastic foundation. A linear variation in radius size is chosen for the cases of continuously varying cross-
sections and thus the following functions for torsional and bending stiffness may be assumed.

J= grg(l 100 = Jo(1 +00) = JoH; = grg(l +0) = I(1 +20)* = LH;

7o 18 the section radius of arch at 6 = 0.

3.1. Arches with classical boundary conditions

In Table 1, the DQM solution convergency for uniform and continuously varying cross-section canti-
lever arches subjected to a torque (M. = T) and shear force (0, = —T/R) at their free ends is examined. As
shown the present DQM solutions are matching with the exact solutions up to five significant digits with

only 11 grid points (N = 11) for the arch with uniform cross-section.

A circular arch problem solved using DQM by Kang et al. (1996) is to be considered here as a
benchmark example. They analyzed this arch problem having a constant circular cross-section with both
ends simply-supported and/or clamped subjected to end torques. o-technique have been used to implement
the boundary conditions for transverse displacements. Thirteen grid points were employed. They showed
that the solution accuracy decreases if 6 becomes too small or too large due to numerical instability. They

Table 1
Convergence of results for cantilever circular arc shaft subjected to torque and shear force at free end () = 180° Q, = —T/R)
o 0 Number of grid points (V) Exact*
7 9 11 13
0.0 90° V* —2.3346 —2.3401 —2.3400 —2.3400 —2.3400
o -1.2339 —-1.2307 —-1.2308 —-1.2308 —-1.2308
M —1.0003 —1.0000 —1.0000 —1.0000 —1.0000
M 1.9970 2.0001 2.0000 2.0000 2.0000
-04 90° V* -3.1291 —3.1420 -3.1419 -3.1419 -
o -2.1799 -2.1361 -2.1350 -2.1350 -
M -1.0152 —-1.0007 —1.0000 —1.0000 —1.0000
M 2.0009 1.9998 2.0000 2.0000 2.0000

#Exact solutions according to Appendix B for the case of o = 0.0.
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Table 2
Convergence of results for circular arc shaft with both end flexurally simply supported subjected to end torque (6, = 90°)
A 0 Number of grid points (N) Exact (Kang et al., 1996)
7 9 11 13
0.0 45° v 0.32532 0.32532 0.32532 0.32532 0.32532
o -1.11072 -1.11072 -1.11072 -1.11072 -1.11072
0.4 45° Ve 1.25469 1.25432 1.25430 1.25430 -
o —0.40604 —0.40592 —0.40591 —0.40591 -

found the optimal values for ¢ by a trial and error procedure. Due to anti-symmetric nature of loading and
the symmetry of the geometry and boundary conditions, half of the arch is considered here with the fol-
lowing conditions at the middle of arch,

d*v
do?
Again the solution convergence behavior for the uniform as well as continuously varying cross-section arch
with both ends simply supported and subjected to end torques are shown in Table 2. It is obvious that for
prismatic cross-sections (the situation considered by Kang et al., 1996) only seven grid points (N = 7) are
sufficient here to obtain solutions with five significant digits accuracy. For the same example, but with a
variable cross-section and with a taper parameter of o = 0.4, 11 grid points were needed to obtain a
converged solution with comparable significant digits. It was realized that the twisting and bending mo-
ments have similar convergence pattern as those for the twisting angle and displacement.

The results for a uniform cross-section arch with both ends clamped are presented in Table 3. Also,
converged solutions for a simply supported arch with continuously varying cross-section for different values
of taper parameter are presented in Table 4.

The solutions for a continuously varying cross-section cantilever shaft subjected to a concentrated shear
force and twisting moments at its free-end can be found in Table 5. As no exact solutions can be found for
tapered arches, to check the validity of the numerical solutions, bending and twisting moments were
evaluated at different sections of the shaft using Egs. (22) and (23). The resulted DQM solutions were then
compared with those values obtained from the equilibrium equations for bending and twisting moments
prove the validity of the DQM solutions for the field variables v and ¢.

v=0; ¢@=0; =0 atf0=40,

3.2. Arches with non-classical boundary conditions

As an example of an arch with non-classical boundary conditions, a uniformly loaded prismatic
circular arch with one end (0 = 0) elastically restrained against rotation, and the other end (6 = 0,)

Table 3
Results for uniform circular arc shaft with both ends flexurally clamped subjected to end torques (N = 11, 6y = 90°)*
0
0° 18° 36° 54° 72° 90°
v 0.0000 —-0.009935 —0.02435 —-0.02863 —-0.01897 0.0000
& —-0.8511 —0.5623 —-0.3359 —-0.1767 —-0.07281 0.0000
M 1.0000 0.7776 0.5770 0.4178 0.3156 0.2803
M; —-0.7197 —0.6844 —0.5822 —-0.4230 —-0.2224 0.0000

#Results in this table match with exact solutions (Kang et al., 1996) to the indicated number of digits.
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Table 4
Results for non-uniform circular arc shaft with both ends flexurally simply supported and subjected to end torques (N = 11, 6, = 90°)*
o (&)
0° 18° 36° 54° 72° 90°
v 0.0 0.0000 0.2373 0.3283 0.2950 0.1712 0.0000
0.2 0.0000 0.1459 0.1977 0.1747 0.1003 0.0000
0.4 0.0000 0.09689 0.1287 0.1121 0.0638 0.0000
o 0.0 —-1.5708 —-1.4939 —-1.2708 —0.9233 —0.4854 0.0000
0.2 —-1.1030 —-0.9583 —-0.7609 —-0.5231 —-0.2625 0.0000
0.4 —-0.83196 —0.6590 —0.4903 —-0.3217 —0.1559 0.0000

* M} and M} match with exact solutions (Kang et al., 1996) up to five significant digits at any o. /'* and ¢* match with exact solutions
(Kang et al., 1996) up to the indicated number of digits at o = 0.

Table 5
Results for non-uniform cantilever circular arc shaft subjected to torque and shear force at free end (N = 11, 0y = 180°, 0, = —T/R)*
o 0
0° 36° 72° 90° 108° 154° 180°
v 0.0 0.0000 —-0.1181 -1.3012 —2.3400 —-3.6471 —6.5628 —8.6998
-0.2 0.0000 -0.1913 -1.4529 —2.6861 -4.3011 -8.1328 —11.168
-0.4 0.0000 —-0.2026 —-1.6414 -3.1419 -5.2148 —-10.594 -15.377
" 0.0 0.0000 -1.6228 —1.8576 —1.2308 -1.3998 2.8739 5.5582
-0.2 0.0000 —-1.7636 -2.2284 —1.5942 -0.3217 3.7078 7.9646
-0.4 0.0000 -1.9256 —2.7294 -2.1350 —-0.6387 5.1972 13.344
M Any o —-3.0000 -2.6180 —-1.6180 —1.0000 —-0.3820 0.6180 1.0000
M Any o 0.0000 1.1756 1.9021 2.0000 1.9021 1.1756 0.0000

#See footnote of Table 4.

Fig. 4. Uniformly loaded arch with elastically restrained and against rotation and transverse displacement.

elastically restrained against transverse displacement (see Fig. 4) is considered. The exact solutions for
this problem were derived and are presented in Appendix B. The DQM solutions are shown in Table 6.
Different values for the torsional and linear elastic coefficients are selected and without loss of gene-
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Table 6
Results for uniform circular arc shaft with elastically restrained against rotation-elastically restrained against transverse displacement
under uniform load (N = 12, §, = 180°)*

KL = KT 0
0° 32.73° 65.46° 98.18° 130.91° 163.64° 180°
Ve 102 0.00000 10.258 37.627 73.118 105.19 123.51 125.47
1.0 0.00000 0.3582 1.1970 1.9846 2.2137 1.6765 1.1681
10? 0.00000 0.2380 0.7771 1.2086 1.1551 0.5021 0.01095
10° 0.00000 0.2366 0.7724 1.2002 1.1442 0.4907 0.00000
C-S supports 0.00000 0.2366 0.7724 1.2002 1.1442 0.4907 0.00000
o* 1072 63.241 53.034 25.364 -10.523 —42.784 —-61.300 —63.266
1.0 0.8054 0.6210 —0.4368 —-1.5641 —-2.0471 -1.6017 —-1.0976
102 0.000952 0.02699 —-0.6621 —-1.3856 —-1.5612 —-0.9930 -0.5057
106 0.000000 0.02038 —0.6641 -1.3831 —1.5556 —-0.9867 -0.5000
C-S supports 0.000000 0.02038 —-0.6641 -1.3831 -1.5556 -0.9867 -0.5000
M 1072 0.6321 —0.2805 —0.6864 -0.6380 —-0.3320 —0.4696 0.0000
1.0 0.8054 -0.1210 —-0.5638 —-0.5637 -0.3021 —0.04345 0.0000
10? 0.9522 0.01414 —-0.4599 -0.5007 —-0.2768 —0.04048 0.0000
10° 0.9549 0.01666 —-0.4579 —-0.4996 -0.2763 —0.04042 0.0000
C-S supports 0.9549 0.01666 -0.4579 —0.4996 —-0.2763 —0.04042 0.0000
M 1072 -2.0000 -1.1629 -0.2741 0.3843 0.6031 0.3130 0.0000
1.0 -2.0000 —-1.2097 —-0.3529 0.2985 0.5376 0.2886 0.0000
102 —-2.0000 -1.2494 -0.4196 0.2259 0.4822 0.2679 0.0000
106 -2.0000 -1.2502 —-0.4209 0.2245 0.4811 0.2675 0.0000
C-S supports -2.0000 -1.2502 —-0.4209 0.2245 0.4811 0.2675 0.0000

#Results in this table match with exact solutions (Appendix B) up to the indicated number of digits.

rality, their non-dimensional values are taken to be equal, i.e. Kt = Ki. One should note that the rigid
body motion (torsional rotation) causes the displacements and also the rotations to increase as the
values of the support elastic coefficients at the ends are reduced. Also, when the elastic coefficients
become very large, i.e. K, Ki = 10%, the results would converge to those results of a clamped-simply
(C-S) supported arch. The results were obtained with N = 12, although satisfactory accurate results
may be obtained with N =9, especially for the cases that Kr, K > 1. Similar to previous examples,
excellent agreements with corresponding exact solutions at different values for elastic coefficients are
achieved.

3.3. Examples with domain decomposition technique

In this section example problems that need domain decomposition technique are to be considered. The
exact solutions for these problems are either derived by the authors as presented in Appendix B or have
been taken from the work by Volterra (1951).

3.3.1. Ring on elastic foundations with point loads

A ring on elastic foundation with a series of point loads is considered (see Fig. 5). Volterra (1951)
presented an analytical solution for this uniform section circular ring on elastic foundation. Due to point
loads, global basis or test functions cannot be used to evaluate the weighting coefficients and therefore the
adoption of the domain decomposition technique becomes a necessity. Due to symmetry of the geometry
and loading condition, with n concentrated forces, only (1/#r) of the ring is considered. The geometry of the
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Fig. 5. (a) A Ring on elastic foundation subjected to point loads (b) Geometry of the modeling.

Table 7
Convergence of the results for uniform circular ring on elastic foundation subjected to point loads (2y = 180°, = 1)*
N 0(K=1) 0 (K = 100)
0.0° 30° 60° 90° 0.0° 30° 60° 90°

10% x V* 7 24.323 27.845 35.511 39.980 —-0.08976 —-0.03368 0.4479 1.1762
10 24.325 27.844 35.508 39.978 —-0.1091 —0.04038 0.4622 1.1964
13 24.325 27.844 35.508 39.978 —-0.1092 —0.04045 0.4621 1.1960
16 24.325 27.844 35.508 39.978 —-0.1092 —0.04045 0.4621 1.1960

107 x @* 7 11.941 6.4028  —5.8330 —13.163 0.5823 0.5655 —-0.1629 —1.4524
10 11.939 6.4069  —5.8218 —13.150 0.6381 0.5885 —0.1842 —-1.4916
13 11.939 6.4069  —5.8218 —13.150 0.6392 0.5891 —-0.1836 —1.4904
16 11.939 6.4069  -5.8218 —13.150 0.6392 0.5891 —-0.1836 —-1.4904

10% x M; 7 0.0000 -7.2254  -8.8516 0.0000 0.0000 —-0.00816 -1.0615 0.0000
10 0.0000 -7.2170  -8.8431 0.0000 0.0000 —0.05358 —-1.1051 0.0000
13 0.0000 -7.2170  -8.8431 0.0000 0.0000 —0.05421 —1.1048 0.0000
16 0.0000 -7.2170  —8.8431 0.0000 0.0000 —0.05421 —1.1048 0.0000

10> x M; 7 -15.612 -10.173 5.5530 29.234 0.5117 -1.0288 -2.2564 10.191
10 —-15.600 —10.168 5.5486 29.221 0.3868 -1.0199 —2.2400 10.499
13 —-15.600 —-10.168 5.5486 29.221 0.3856 —-1.0186 -2.2382 10.498
16 —-15.600 —-10.168 5.5486 29.221 0.3856 -1.0186 -2.2382 10.498

#Results in this table match with exact solutions (Volterra, 1951) up to the indicated number of digits.

model is shown in Fig. 5(b) and the boundary conditions at its ends are stated in Appendix A. Two sub-
domains are sufficient for the analysis of this problem. Three different loading conditions are considered
and in each case different values for the elastic foundation are examined. In Table 7, the solution con-
vergence is shown for the ring under only two point loads, the least number of point loads for a symmetric
loading. In Table 8, the results for the cases that the numbers of point loads are relatively large are ex-
hibited. Also, the results for an intermediate number of point loads are presented in Table 9. By comparing
the results for these cases one can conclude that in all cases using N < 13 can yield a converged solution for
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Table 8
Convergence of the results for uniform circular ring on elastic foundation subjected to point loads (2y = 30°, = 1)*
N 0K =1) 0 (K = 100)
0.0° 5° 10° 15° 0.0° 5° 10° 15°
102 x v~ 7 190.97 190.98 190.99 191.01 1.8921 1.9001 1.9184 1.9301
13 190.97 190.98 190.99 191.01 1.8921 1.9001 1.9184 1.9301
10° x ¢ 7 0.3540 0.1946 —-0.1706 —-0.4040 0.3524 0.1939 —-0.1694 —-0.4020
13 0.3540 0.1946 —0.1706 —0.4040 0.3524 0.1939 —0.1694 —0.4020
10> x M; 7 0.0000 -0.1705 -0.2129 0.0000 0.0000 —0.1696 —-0.2120 0.0000
13 0.0000 —-0.1705 —-0.2129 0.0000 0.0000 —0.1696 —-0.2120 0.0000
10> x M; 7 -2.1991 —-1.4640 0.7356 4.3833 -2.1863 —-1.4575 0.7293 4.7301
13 -2.1991 —1.4640 0.7356 4.3833 —-2.1863 —1.4575 0.7293 4.7301
#Results in this table match with exact solutions (Volterra, 1951) up to the indicated number of digits.
Table 9
Convergence of the results for uniform circular ring on elastic foundation subjected to point loads (2y = 90°, u=1)*
N 0(K=1) 0 (K = 100)
0.0° 15° 30° 45° 0.0° 15° 30° 45°
102 x v* 7 63.091 63.352 63.938 64.303 0.2552 0.4215 0.8185 1.0874
10 63.091 63.352 63.938 64.303 0.2552 0.4217 0.8185 1.0868
13 63.091 63.352 63.938 64.303 0.2552 0.4217 0.8185 1.0868
10% x ¢ 7 1.0717 0.5848 —-0.5186 —-1.2108 0.7214 0.4109 —0.3356 —0.8478
10 1.0719 0.5851 —-0.5183 -1.2106 0.7158 0.4055 —-0.3403 —-0.8512
13 1.0719 0.5851 —-0.5183 -1.2106 0.7158 0.4055 —0.3403 —-0.8512
10> x M; 7 0.0000 —-1.6260 —-2.0133 0.0000 0.0000 —-1.0524 —-1.4294 0.0000
10 0.0000 —1.6260 -2.0133 0.0000 0.0000 —-1.0506 —-1.4271 0.0000
13 0.0000 —-1.6260 —-2.0133 0.0000 0.0000 —-1.0506 —-1.4271 0.0000
10% x M; 7 —-7.0093 —4.6191 2.4051 13.622 —4.3683 —3.2557 —-1.0892 10.876
10 —-7.0093 —4.6191 2.4051 13.622 —4.3727 -3.2567 —-1.0932 10.883
13 —-7.0093 —4.6191 2.4051 13.622 —4.3727 —-3.2567 —1.0932 10.883

#Results in this table match with exact solutions (Volterra, 1951) up to the indicated number of digits.

Fig. 6. A cantilever arch with discontinuity in stiffness.
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Table 10
Results for stepped arc shaft with clamped-free ends subjected to uniform loads (N =9, 0y, = 6y, = 90°)*

e 0

0° 22.5° 45° 90° 135° 157.5° 180°

2 v 0.0000 0.0073 0.3271 1.3591 2.6952 3.2226 3.5104
@ 0.0000 0.4673 0.6060 -0.0086 —-1.1265 -1.6393 -1.9261
M 3.1416 2.3662 1.6491 0.5708 0.0078 0.00100 0.00000
M —2.0000 -1.9239 -1.7071 —1.0000 -0.2929 —-0.00761 0.00000

4 V* 0.0000 0.0365 0.1636 0.6796 1.4469 1.8010 2.0290
" 0.0000 0.2337 0.3030 —-0.0043 —-0.5534 —-0.8928 —-1.1200
M 3.1416 2.3662 1.6491 0.5708 0.0078 0.00100 0.00000
M; —-2.0000 -1.9239 -1.7071 —1.0000 -0.2929 -0.00761 0.00000

#Results in this table match with exact solutions (Appendix B) up to the indicated number of digits.

the problem. As expected, when the number of point loads is increased (see Table 8), the transverse dis-
placement at each section converges to a unique value and the rotation approaches zero. This is because the
loading conditions approaches to a uniform loading condition for which the transverse displacements at all
section should become equal and the rotation should tend to zero. Using similar procedure, the domain
decomposition technique can be implemented for non-uniform rings under non-symmetric loading.

3.3.2. An arch with discontinuous geometrical and material properties

A cantilever arch with discontinuity in its stiffness subjected to a uniform loading is considered (see Fig.
6). It is assumed both sub-domains have equal Poisson’s ratio (=0.3) but their Young’s moduli would be
different. Exact solutions for this problem are given in Appendix B. In Table 10, DQM solutions are
presented. Using nine grid points at each sub-domain yields solutions accurate to five significant digits.

Different stiffness ratios i.e. e = &9 = £ix were examined.

GrJy — Exly

4. Closure

A DQ methodology was employed to study the out-of-plane static analysis of circular arches with
uniform, continuously varying, and stepped cross-sections and under different loading and boundary
conditions. The domain decomposition technique in conjunction with the proposed DQ methodology is
utilized for the analysis of arches having discontinuity in loading, material and geometry. For uniform and
stepped section arches, the solutions were compared with those of exact solutions where the accuracy and
the convergence of the methodology were verified under different classical and non-classical boundary
conditions. For non-uniform section arches, convergent solutions were obtained and the validity of the
results was discussed. Using the present DQ methodology with small number of grid points, accurate and
converged solutions for arch problems can be obtained.

Appendix A. The boundary conditions
The boundary conditions considered are of the following types:

(a) Flexurally simply support:

EI 1 d% GJ (dep 1 dv
U—O, MY_T<—E@+(/))_O’ MZ—7<@+1—3@)—0 (Al)
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(b) Flexurally clamped:

dv GJ (de 1 dv

(c) Clamped:

do
v=0; ¢=0 @—0, (A.3)
(d) Elastically restrained against torsional rotation:
El, 1 d*v GJ (do 1dv
v=0; MXT(]—Q@JFQD)O, ?<@+}—e@>+nkﬂp0 (A4)

(e) Elastically restrained against transverse displacement or free end:

3 2
i[E[X<1 ﬂ—%> +d(EIx) (lﬂ—(p> —GJ<%+1@>] +nky =0

R? Rdo® do do \ R 4¢? do " R d6
EI 1 d*v GJ (dep 1 dv
M, =" ——— =0, M=——4+-—|= A.
. R( Rd92+q)> 0 M=% (d0+Rd0> 0 (A-5)

(f) Boundary conditions for each end of the model presented for ring on elastic foundation:

dv GJ (de 1 dv
a Y MZ_R(clé)+Rc1(J)_O’

1 1 dv de\ d(EL) /1 d% do 1 dv
Q}’_E[E[*<E@_@>+ do (EW“”)_G‘]<@+E@>]_O (A-6)

Appendix B. The exact solutions
B.1. Exact solutions for prismatic arches

The works by Volterra (1951) and Kang et al. (1996) can be extended to obtain the exact solutions for
differential governing equations of prismatic arches under uniform loading and general boundary condi-
tions. The general solutions under such situations take the following form,

2(—C5c08 O + Cy45in O)

V(@) =—Cicos© — Cysin © — O(Cssin O + C4cos O) + 050 + Cs0
u
+ Co— sen(p,)(62/2) (B.1)
@ () =Cicos 0+ Cysin O + O(Cs sin O + Cycos O) — sgn(p,) (1 + u) (B.2)

where

if p, is positive

1
©=0/0, and sgn(p,)= { —1 if p, is negative
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In the above equations, {C} = [CI,CZ,C3,C4,C5,C6]T are obtained after the implementation of the
boundary conditions. In the absence of uniform loading, the last terms in Egs. (B.1) and (B.2) should
be removed. The bending and twisting moments are evaluated from Eqgs. (B.1) and (B.2) as,

M (0) = a i#) (C3cos @ — C4sin ©) — sgn(p,) (B.3)
M (0) = ) (C5sin © + C4co8 ©) 4+ Cs — Osgn(p,) (B.4)

Also, {C} = [C), Gy, C3, Cy, Cs, Cﬁ]T under different boundary and loading conditions are,

(a) Prismatic cantilever shaft subjected to end twisting moment and shear force:

= 1400 o _(tmsinG o Tdp

— C,=—1 B.5
cos 0, ’ 2 cos2 0, ' 37 cos Oy’ 4 (B.5)

(b) Elastically restrained prismatic shaft subjected to uniform transverse load:

r Ky 0 0 2/(1+ ) 1 0 7' (I+wmwkr
-1 0 —2/(1+u) 0 0 1 0
| 0 1 0 (-w/(+w 1 0 0 2
uKpcosty pKy sin by o B —uKi 0y  —pKy i
0 0 sin 0, cos 0, 0.5(1+u) 0 ()b
L 0 0 cos 0y —sin b, 0 0 @
(B.6)

where

o = [(2usin 0y + 2uKy cos 0p) /(1 + p)] + pKy 0, sin Op;
Bi = [(2ucos 0y — 2uKy sin 0y) /(1 + w)] + uKy0o cos Oo;

(¢) Clamped-simply (C-S) supported arch under uniform load:

! 0 0 0 0 07 ' (—-(1+p
—1 0 —2/(1+np) 0 0 1 0
0 ~1 0 1—w)/(1+ 1 0 0
{C} _ . ( :u)/( :u) ”93 (B7)
ucosty wusinb, o b, —uby —u -7
0 0 sin 0y cos by 0.5(1+u) 0 S
| 0 0 cos 6 — sin 0, 0 | @
where

op = 2usin Oy /(1 + p); P, = [-2usinby/(1 + p)] + 16y cos 0.
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B.2. Exact solutions for a cantilever shaft with discontinuous stiffness

By using Eqgs. (B.1)-(B.4) for each sub-domain and satisfying the boundary as well as the continuity
conditions, exact solutions for a cantilever shaft having discontinuous stiffness (6y; = 0y;) subjected to
uniform transverse loading (see Fig. 6) are obtained as

(a) In sub-domain 1(see Fig. 6):

. . 2 .
V(@)= —Cicos @ — Cysin @ — O(Cssin @ + C4co080) + ——— (—C3¢c08 O + Cy8in O)

14+ u
+ Cs50 + Cs — (07 /2e)sgn(p,) (B.8)
el oy . . (1+p)

@ (@) =CicosO + Cysin O + O(C;38in O + C4co8 O) — ngn(py) (B.9)
MA(0) =~ (—Cycos O + Cysin ©) — sgn(p,) (B.10)
AR ' Sy '

M (O) = (13_6 )(C3 sin @ + C4cos @) + eCs — Osgn(p,) (B.11)

U
where
O =0/0y

(b) In sub-domain 2 (see Fig. 6):
2(=Cycos @ + Cyysin O)

V(@) =—C7¢c080 — Cgsin @ — @(Cysin O + Cypcos O) + 0+ +CnHO
u

+ Ci, — 0.50%sgn(p,) (B.12)
¢ (0) =Cr¢c080 + Cgsin O + O(Cysin O + Cypcos ) — (1 + p)sgn(p,) (B.13)
M(O) = 2 (=Cycos O + Cy8in @) — sgn(p,) (B.14)

. = I+p 9 10 gn(p, .
2 .

M (©) = ) (Cysin O + Cypcos ©) + Cy; — Osgn(p,) (B.15)

where
@ = (9 — 901)/002

0 is measured from the fixed end (see Fig. 6).

Also, {C} = [Cl,Cz,C3,C4,C5,C6,C7,Cg,Cg,Cm,CH,Clz]T are obtained from the solution to the fol-
lowing matrix equation
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- -1

—1 0 0 0 0 000 0 0 0 0 ~(4w)
10 7% 0 0 -100 0 0 0 0 g
01 0 —#4 1 000 0 0 0 0 0
0 0 0 00 0 0 0 0 —sinfy —cosby 0 0 0
00 0 0 0 00 0 —sinfy —cosfy —0.5(1+p) 0 — (Ll
0 0 0 0 0 0 0 0 —cosfy sinby 0 0 e
{¢l=10 -1 =00 0 0 010 0 0 0 0 (1-1) (42
0 1 0o (l:—zu) -0 1 1 0 (112“) 0 0 1 7%@
(u=1) (1-p) e
~1 0 (!H;) 0 0 00-1 0 (1;;1) 1 0 iy
0 0 —Z (z —e 00 0 20 s 1 0 o,
00 0 —Z 0 000 £ 0 0 0 0
L0 0O —e 0 0 000 O 1 0 0] 0
(B.16)

References

Bert, C.W., Malik, M., 1996. Differential quadrature method in computational mechanics: a review. Applied Mechanic Review 49,
1-27.

Bert, C.W., Malik, M., 1997. Differential quadrature method: a powerfull new technique for analysis of composite structures.
Computers and Structures 39, 179-189.

Chen, W., Striz, A.G., Bert, C.W., 1997. A new approach to the differential quadrature method for fourth-order equations.
International Journal for Numerical Methods in Engineering 40, 1941-1956.

Civan, F., Sliepcevich, C.M., 1985. Application of differential quadrature in solution of pool boiling in cavities. Proceeding of
Oklahoma Academy of Sciences 65, 73-78.

De Rosa, M.A., Franciosi, C., 1998a. On natural boundary conditions on DQM. Mechanics Research Communication 25, 279-286.

De Rosa, M.A., Franciosi, C., 1998b. Nonclassical boundary conditions and DQM. Journal of Sound and Vibration 212, 743-748.

De Rosa, M.A., Franciosi, C., 2000. Exact and approximate dynamic analysis of circular arches using DQM. International Journal of
Solids and Structures 37, 1103-1117.

Kang, K., Bert, C.W., Striz, A.G., 1996. Static analysis of curved shaft subjected to end torques. International Journal of Solids and
Structures 11, 1587-1596.

Karami, G., Malekzadeh, P., 2002a. A new differential quadrature methodology for beam analysis and the associated DQEM.
Computer Methods in Applied Mechanics and Engineering 191, 3509-3526.

Karami, G., Malekzadeh, P., 2002b. Static and stability analyses of arbitrary straight-sided quadrilateral thin plates by DQM.
International Journal of Solids and Structures 39 (19), 4927-4947.

Karami, G., Malekzadeh, P., 2003a. Application of a new differential quadrature methodology for free vibration analysis of plates.
International Journal for Numerical Methods in Engineering 54 (3), 847-868.

Karami, G., Malekzadeh, P., 2003b. An efficient differential quadrature methodology for free vibration analysis of arbitrary straight-
sided quadrilateral thin plates. Journal of Sound and Vibration 263 (2), 415-442.

Malik, M., Bert, C.W., 1996. Implementing multiple boundary conditions in the DQ solution of higher order PDE’s: application to free
vibration of plates. International Journal for Numerical Methods in Engineering 39, 1237-1258.

Shu, C., Du, H., 1997a. Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of
beams and plates. International Journal of Solids and Structures 34, 819-835.

Shu, C., Du, H., 1997b. A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of
plates. International Journal of Solids Structures 34, 837-846.

Shu, C., Richards, B.E., 1992. Application of generalized differential quadrature to solve two-dimensional incompressible Navier—
Stokes equations. International Journal of Numerical Methods in Fluids 15, 791-798.

Tong, X., Mrad, N., Tabrrok, B., 1998. In-plane vibration of circular arches with variable cross-section. Journal of Sound and
Vibration 212, 121-140.

Volterra, E., 1951. Bending of a circular beam on elastic foundation. Journal of Applied Mechanics 19, 1-4.

Wang, X., Bert, C.W., 1993. A new approach in applying differential quadrature and free vibrational analysis of beams and plates.
Journal of Sound Vibration 162, 566-572.



P. Malekzadeh, G. Karami | International Journal of Solids and Structures 40 (2003 ) 6527-6545 6545

Wang, X., Gu, H., 1997. Static analysis of frame structures by the differential quadrature element method. International Journal for
Numerical Methods in Engineering 40, 759-772.

Wang, X., Wang, Y.L., Chen, R.-B., 1998. Static and free vibration analysis of rectangular plates by the differential quadrature element
method. Communications in Numerical Methods in Engineering 14, 1133-1141.

Wu, T.Y., Liu, G.R., 2000. Axisymmetric bending solution of shells of revolution by the generalized differential quadrature rule.
International Journal of Pressure Vessel and Piping 77, 149-157.

Wu, T.Y., Liu, G.R., 2001. The generalized differential quadrature rule for fourth-order differential equations. International Journal
for Numerical Methods in Engineering 50, 1907-1929.

Yoo, C.H., Fehrenbach, J.P., 1981. Natural frequencies of curved girders. Journal of Engineering Mechanics Division ASCE 107
(EM2), 339-354.



	Out-of-plane static analysis of circular arches by DQM
	Introduction
	Governing equations
	DQ analogues of governing and boundary conditions
	Domain decomposition technique

	Numerical results
	Arches with classical boundary conditions
	Arches with non-classical boundary conditions
	Examples with domain decomposition technique
	Ring on elastic foundations with point loads
	An arch with discontinuous geometrical and material properties


	Closure
	Exact solutions for prismatic arches
	Exact solutions for a cantilever shaft with discontinuous stiffness
	The boundary conditions
	The exact solutions
	References


